An Interactive Auto-recharging System for Mobile Robots

Kuo-Lan Su, Yi-Lin Liao, Shih-Ping Lin, Sian-Fu Lin


The article describes a new auto-charging system designed to enhance successful docking rates for mobile robots while at the same time monitoring the status of the charging current between the mobile robot and the docking station. The communication interface of the mobile robot and the docking station uses a wireless RF interface. The docking station is designed with one active degree of freedom and two passive degrees of freedom. Users tune the location of the charging pins on the docking station to make it possible for the mobile robot to execute an auto-recharging process. The auto-recharging process uses multiple sensors and a laser range finder located on the mobile robot. The laser range finder searches for a landmark to guide the mobile robot towards the docking station. In the experiment, the power of the mobile robot is under its threshold value. The mobile robot transmits a charging command to the docking station via a wireless RF interface. The docking station transmits a location command back to the mobile robot via this wireless RF interface. The mobile robot uses its laser range finder to search for the landmark of the assigned docking station and programs a motion trajectory to move forward to the docking station. The docking station supplies a charging current to the mobile robot by means of a charger. The power detection module simultaneously detects the charging current and the voltage values of the charging process in both the docking station and the mobile robot. The system can monitor the status of the charging process between the docking station and the mobile robot at any time. The power of the mobile robot is enough to be detected by the power detection module. When the charging process is complete, the docking station turns off the charging current and triggers the mobile robot to leave the docking station via the wireless RF interface.


auto-charging system; mobile robots; docking station; laser range finder; wireless RF interface

Full Text: PDF HTML


  • There are currently no refbacks.

Copyright © 2011-2018 AUSMT ISSN: 2223-9766